Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Gravitational waves (2024/2025: periode 1)
Cursusdoel
2. The student is able to discuss what are the physical degrees of freedom in the linearized Einstein
equations and how these relate to gravitational waves.
3. The student is able to discuss what are the properties of gravitational waves: polarizations, effect on
matter, energy carried by them.
4. The student knows where the quadrupole formula comes from, and is able to use it to derive the
gravitational radiation caused by accelerating bodies in example settings.
5. In particular, the student is able to calculate the gravitational waves emitted by two compact objects
orbiting each other.
6. The student is able to explain how interferometers like LIGO and Virgo detect gravitational waves.
7. The student is able to explain the basic principles of gravitational wave data analysis.
8. The student is able to discuss in broad strokes what has been the scientific pay-off of discoveries by
LIGO/Virgo in the past few years, and what can be expected from next-generation gravitational wave
observatories.
Vakinhoudelijk
tensor), index notation, coordinate transformations. Special relativity is introduced, and a basic overview of
general relativity is given. The linearized Einstein equations are discussed and their physical degrees of freedom
are identified; it is shown how this leads to a wave equation and hence gravitational waves. The basic properties
of gravitational waves are studied: what polarizations they have, how they interact with matter, and the energy
they carry. Next we derive the quadrupole formula, which describes how gravitational waves are generated by the
motion of masses. An important example is the gravitational radiation emitted by two compact objects (neutron
stars and/or black holes) that orbit each other, and spiral towards each other until they merge together. We
discuss how these and other gravitational wave signals are detected with interferometers such as LIGO and Virgo,
including the basics of gravitational wave data analysis: how to identify and study weak signals in noisy detector
data. The final few lectures make a connection with discoveries made by LIGO and Virgo in the past few years,
and their impact on fundamental physics, astrophysics, and cosmology. We end with a discussion of future
gravitational wave observatories such as the underground Einstein Telescope and the space-based LISA,
together with the scientific output that can be expected from these.
Werkvormen
Werkcollege
Toetsing
Eindresultaat
Verplicht | Weging 100% | ECTS 7,5
80% exam, 20% exercises
Ingangseisen en voorkennis
Ingangseisen
Er is geen informatie over verplichte ingangseisen bekend.
Voorkennis
Relativistische en klassieke mechanica (NS-106B), Golven en optica (NS-108B), Elektromagnetisme (NS-112B), Wiskundige technieken (NS-120B, NS-121B, NS-220B). Recommended: Zwarte gaten (NS-159B), Electrodynamica (NS-251B), Stellaire astrofysica (NS-268B), Subatomaire fysica (NS-369B).
Voertalen
- Engels
Cursusmomenten
Gerelateerde studies
- Natuur- en Sterrenkunde
- Natuur- en Sterrenkunde vanaf 2023-2024
- Natuurkunde en Scheikunde vanaf 2017-2018
- Natuurkunde en Scheikunde vanaf 2023-2024
- Natuurkunde en Wiskunde 2023-2024
- Natuurkunde en wiskunde vanaf 2019-2020
- Natuurkunde en wiskunde vanaf 2020-2021
- Natuurkunde en Wiskunde vanaf 2024-2025
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
Er is geen informatie over de verplichte literatuur bekend
Aanbevolen materiaal
-
BOEKJolien D.E. Creighton and Warren G. Anderson, Gravitational-Wave Physics and Astronomy: An Introduction to Theory, Experiment, and Data Analysis
-
BOEKJames Hartle, Gravity: An Introduction to Einstein’s General Relativity
Coördinator
prof. dr. C.F.F. Van den Broeck | c.f.f.vandenbroeck@uu.nl |
Docenten
dr. A. Samajdar | A.Samajdar@uu.nl |
prof. dr. C.F.F. Van den Broeck | c.f.f.vandenbroeck@uu.nl |
Inschrijving
Inschrijving
Van maandag 3 juni 2024 tot en met vrijdag 21 juni 2024
Na-inschrijving
Van maandag 19 augustus 2024 tot en met dinsdag 20 augustus 2024
Inschrijving niet geopend
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien