Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Mathematics for poets, thinkers, and doers
Cursusdoel
- Discuss critically, and situate in scholarly and historical context, reflections on the nature of mathematics.
- Draw on a range of examples to discuss the role of mathematics in society, culture, and human thought.
- Read simple mathematical proofs and explain the ideas and methodologies involved.
- Reason rigorously and conceptually about fundamental notions in a simple geometric setting.
- Relate fundamental aspects of mathematical reasoning to its broader meaning and purpose.
- Discuss the nature of mathematical knowledge and axiomatic-deductive systems, especially on the basis of key foundational concepts of Euclidean and non-Euclidean geometry.
- class participation: 1, 2, 3, 5, 6
- assignments: 3, 4, 5, 6
- midterm exam: 1, 2, 5, 6
- Final exam: 1, 2, 5, 6
Vakinhoudelijk
Instead of the drill and practice problems of a traditional mathematics class, we approach mathematics through seminar discussions, hands-on activities, and readings connecting it to broader issues. We thus analyze a selection of emblematic and important mathematical proofs and use them as a platform for reflecting on the nature of mathematics. In parallel, we read excerpts from seminal historical texts across the ages as well as modern scholarship from a wide range of academic disciplines that shed light on the interplay between mathematics and its societal and intellectual context. We focus especially on geometry, from the origins of mathematical reasoning in early civilizations, to Euclid’s Elements that was the gold standard of exact reasoning for millennia and the model for countless philosophical systems, to the projective geometry of Renaissance art, to the more modern non-Euclidean geometry that overturned conventional wisdom about the nature of human spatial perception and the shape of space.
We interleave mathematical topics with seminar discussions of a rich array of short readings that connect the material to a broader cultural, philosophical, and historical context. We study a selection of mathematical proofs and topics drawn from geometry with an emphasis on conceptual understanding. To this end we supplement textual mathematical sources with physical models and hands-on activities that allow us to experience and explore geometry in a concrete way.
Werkvormen
Toetsing
class participation
Verplicht | Weging 10% | ECTS 0,75
assignments
Verplicht | Weging 40% | ECTS 3
*midterm FEEDBACK*
Niet verplicht
midterm exam
Verplicht | Weging 25% | ECTS 1,88
Final exam
Verplicht | Weging 25% | ECTS 1,88
Ingangseisen en voorkennis
Ingangseisen
Er is geen informatie over verplichte ingangseisen bekend.
Voorkennis
Er is geen informatie over benodigde voorkennis bekend.
Voertalen
- Engels
Competenties
-
Interdisciplinariteit
-
Kritisch lezen
Cursusmomenten
Gerelateerde studies
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
Er is geen informatie over de verplichte literatuur bekend
Aanbevolen materiaal
Er is geen informatie over de aanbevolen literatuur bekend
Coördinator
Onbekend | - |
Docenten
Onbekend | - |
Inschrijving
Naar OSIRIS-inschrijvingen
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien