Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Inleiding Topologie
Cursusdoel
Vakinhoudelijk
Het vak Inleiding Topologie is een verplicht vak voor wiskundestudenten.
Leerdoelen:
The following topics will be discussed in the course.
- The intuitive notion of "space" (+ definition of metric spaces) and standard examples (spheres, Moebius band, torus, Klein bottle, projective space etc).
- The abstract definition of topological space; first examples; metric topology; metrizability; Hausdorffness, separation axioms and normal spaces; subspace topology.
- Neighborhoods; continuity; homeomorphisms; embeddings; converegence and sequential continuity; basis of neighborhoods and 1st countability.
- Inside a topological space: interior, closure, boundary.
- Quotient topology; special quotients (e.g. quotients modulo group actions; collapsing a subspace to a point; cylinders, cones, suspensions).
- Product topology, bases for topologies, generated topologies.
- Spaces of functions; pointwise, uniform, uniform on compacts convergence; completeness with respect to the sup metric.
- Connectedness, path connectedness, connected components.
- Compactness, basic properties, compactness in metric spaces (characterizations in terms of completeness and total boundedness), finite partitions of unity; sequential compactness.
- Local compactness; the one-point compactification.
- Paracompactness and arbitrary partitions of unity. Criteria for paracompactness.
- Urysohn's lemma, the Urysohn metrizability theorem, the Smirnov metrizability theorem.
- the standard examples (spheres, tori, Moebius bands, projective spaces) and manipulations with them (gluing, etc),
- the basic notions of topology: the abstract notion of topological space, convergence, continuity, homeomorphisms, interior, closure,
- the standard constructions of topological spaces: metric topologies, induced topologies, quotient topologies, product topologies, generated topologies,
- the most important topological properties: Hausdorffness, connectedness, compactness, local compactness,
- the usefulness of compactness for proving embedding results; characterizations of compactness in metric spaces,
- several metrizability results,
- manipulate with the basic concepts of topology; show the axioms for a topology; prove that a given function is continuous, or that a sequence is convergent; to compute in examples interiors, closures and boundaries; to write proper proofs using these concepts;
- manipulate with explicit examples, perform gluings or collapsing a subspaces (as an example of quotients);
- use the various topological properties in order to distinguish certain topological spaces (proving that they are not homeomorphic). Example: a circle is not homeomorphic to a bouquet of two circles because, after removing any point from a circle the result is connected, while the corresponding property is not true for the bouquet;
- manipulate with quotients and to compute quotients. Be able to show that a given map is an embedding (e.g., by using compactness);
- use compactness and sequential compactness;
- work with the one point compactifion;
- use paracompactness and partition of unity;
- use normality and Urysohns lemma on the existence of separating functions;
- understand Urysohn and Smirnov metrizability theorems.
Each week there are two lecture and two exercise classes, each of two hours. There will be a number of exercises for instruction in class, and a number of homework exercises (mandatory).
Toetsing:
There will be mandatory weekly homework exercises. These lead to a grade H with 1 decimal of accuracy.
At the end of the course there will be a 3 hour written exam, leading to a grade E with 1 decimal of accuracy.
The final grade F is be determined by F = max {(7E + 3H)/10, (17E + 3 H)/20} rounded off to an integral number up to 6, and to a half integer above 6 (to the closest one). The requirements for passing the exam are: H and E have to be at least 5 (before rounding!) and F has to be at least 6.
Herkansing en inspanningsverplichting:
The same rules apply for the retake.
Taal van het vak:
The language of instruction is English.
Werkvormen
Werkcollege
Toetsing
Eindresultaat
Verplicht | Weging 100% | ECTS 7,5
Ingangseisen en voorkennis
Ingangseisen
Er is geen informatie over verplichte ingangseisen bekend.
Voorkennis
WISB102 Bewijzen in de Wiskunde, WISB114 Analyse en WISB124 Inleiding groepen en ringen (bij voorkeur, maar de nodige kennis kan tijdens de cursus geleerd worden). Zie de cursusplanner (cursusplanner.uu.nl) voor de inhoud van deze vakken: selecteer Faculteit Betawetenschappen en vervolgens het programma van de bachelor Wiskunde van het meest recente jaar.
Voertalen
- Engels
Cursusmomenten
Gerelateerde studies
- Informatica en wiskunde vanaf 2019-2020
- Informatica en wiskunde vanaf 2022-2023
- Informatica en wiskunde vanaf 2024-2025
- Minor Wiskunde
- Natuurkunde en Wiskunde 2023-2024
- Natuurkunde en wiskunde vanaf 2019-2020
- Natuurkunde en wiskunde vanaf 2020-2021
- Natuurkunde en Wiskunde vanaf 2024-2025
- Wiskunde en Economie vanaf 2022-2023
- Wiskunde en Economie vanaf 2024-2025
- Wiskunde en toepassingen vanaf 2022-2023
- Wiskunde en toepassingen vanaf 2024-2025
- Wiskunde vanaf 2019-2020
- Wiskunde vanaf 2022-2023
- Wiskunde vanaf 2024-2025
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
Er is geen informatie over de verplichte literatuur bekend
Aanbevolen materiaal
Materiaal | Omschrijving |
---|---|
SOFTWARE | Geen software nodig |
DICTAAT | Lecture notes that will be made available on the website of the course: http://www.staff.science.uu.nl/~ban00101/inltop2018/inltop2018.html |
Coördinator
Onbekend | - |
Docenten
Onbekend | - |
Inschrijving
Inschrijving
Van maandag 16 september 2024 tot en met vrijdag 27 september 2024
Na-inschrijving
Van maandag 21 oktober 2024 tot en met dinsdag 22 oktober 2024
Inschrijving niet geopend
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien