Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Data mining (2023/2024: Periode 1)
Cursusdoel
After this course the student knows how several well-known data mining algorithms work, how and when they can be applied, and how the resulting models and patterns should be interpreted.
Furthermore, the student understands general problems of data-analysis, such as overfitting, the curse of dimensionality, and model selection.
Finally, the student gains practical experience with the programming and application of data mining algorithms through practical assignments.
Assessment
The course is graded through
- a written exam
- two practical assignments
- homework exercises.
With grades P1 and P2 for the practical assignments, grade E for the written exam, and homework bonus HB,
the final grade F is computed as follows:
F = 0.5 * E + 0.3 * P1 + 0.2 * P2 + HB.
To pass the course, it is required that each practical assignment has grade at least 6 and the grade for the written exam is at least 5.
- F is rounded to the nearest tenth of a point if F >= 6.0.
- F is rounded to the nearest whole point if F < 6.0.
- The maximum final grade is 10.
To qualify for a repair of the final result the mark needs to be at least a 4.
It is required that the student has:
- knowledge of algorithms and data structures, at the level of the bachelor course INFODS Datastructuren.
- successfully completed a serious programming course, such as the bachelor course INFOIMP Imperatief Programmeren
Experience with using packages in R or Python is not sufficient. - knowledge of probability and statistics, at the level of INFOB3OMI Onderzoeksmethoden voor Informatica.
- knowledge of linear algebra, such as treated in the bachelor course INFOGR Graphics.
Vakinhoudelijk
Topics covered include (content can vary somewhat from year to year):
- classification tree algorithms, bagging and random forests
- graphical models (including Bayesian networks)
- frequent pattern mining
- text mining
- social network mining
Lectures, lab sessions.
Literature
Selected book chapters, articles, and lecture notes.
Werkvormen
Werkcollege
Toetsing
Eindresultaat
Verplicht | Weging 100% | ECTS 7,5
Ingangseisen en voorkennis
Ingangseisen
Je moet een geldige toelatingsbeschikking hebben
Voorkennis
This course is aimed at students of the Computing Science (COSC) master program. It is assumed that the student has: (1) Knowledge of algorithms and data structures, at the level of the bachelor course "Datastructuren". (2) Successfully completed a serious programming course, such as the bachelor course "Imperatief Programmeren". (3) Knowledge of probability and statistics, at the level of "Onderzoeksmethoden voor Informatica".
Voorkennis kan worden opgedaan met
(4) Knowledge of linear algebra (such as treated in the bachelor course Graphics
Voertalen
- Engels
Cursusmomenten
Gerelateerde studies
- Artificial Intelligence vanaf 2018-2019
- Artificial Intelligence vanaf 2020-2021
- Business Informatics vanaf 2019-2020
- Business Informatics vanaf 2020-2021
- Computing Science vanaf 2020-2021
- Computing Science vanaf 2023-2024
- Data Science vanaf 2023-2024
- Energy Science - Natural Science cohort 2022-2023
- Energy Science - Natural Science cohort 2023-2024
- Energy Science - System Analysis cohort 2022-2023
- Energy Science - System Analysis cohort 2023-2024
- Energy Science cohort 2024-2025
- Human Computer Interaction vanaf 2019-2020
- Human Computer Interaction vanaf 2020-2021
- Innovation Sciences cohort 2022-2023
- Innovation Sciences cohort 2023-2024
- Innovation Sciences cohort 2024-2025
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
Er is geen informatie over de verplichte literatuur bekend
Aanbevolen materiaal
Er is geen informatie over de aanbevolen literatuur bekend
Coördinator
dr. A.J. Feelders | A.J.Feelders@uu.nl |
Docenten
dr. A.J. Feelders | A.J.Feelders@uu.nl |
Inschrijving
Inschrijving
Van dinsdag 30 mei 2023 tot en met maandag 21 augustus 2023
Na-inschrijving
Van maandag 21 augustus 2023 tot en met maandag 18 september 2023
Inschrijving niet geopend
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien