Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Foundations of Mathematics
Cursusdoel
- demonstrate the various forms of mathematical proof
- use mathematical notation
- read and write a mathematical proof
- explain some fundamental notions and theorems of mathematics
- Written in-class exam 1: This exam tests your ability to explain the meaning of, and use, the mathematical notation appearing in the first half of the course (course goals 2 and 4). Your ability to explain and prove some fundamental theorems will also be tested (course goals 1, 3, and 4).
- Written in-class exam 2: This exam tests your ability to explain the meaning of, and use, the mathematical notation appearing in the course (course goals 2 and 4). Focus will lie on the material from the second half of the course. Your ability to explain and prove some fundamental theorems will also be tested (course goals 1, 3, and 4).
- Homework assignments: These assignments will primarily test your ability to read and write a mathematical proof (course goal 3). They will also test your ability to use mathematical notation (course goal 2).
Vakinhoudelijk
These concepts will be applied to various fields of mathematics, such as set theory and number theory. Along the way, the student becomes acquainted with the language and notations of mathematics.
The course highlights the main attraction mathematics has for its practitioners: the joy of solving a puzzle. Every proof contains a sparkle of ingenuity, and there is great intellectual satisfaction in discovering the essential step in a proof, or admiring the brilliance of someone who found it before you. A typical problem is for instance the question whether the square root of 2 is a fraction. The answer came as a great shock to the ancient Greeks and its proof is both simple and very clever.
Another feature of the course is an introduction to the mysteries and paradoxes of the concept ʽinfinityʼ. Are there more real numbers than integers? (Yes.) Is the set of fractions larger than the set of integers? (No.)
Format
Werkvormen
Toetsing
Mid-term Exam
Verplicht | Weging 40% | ECTS 3
Final Exam 1
Verplicht | Weging 40% | ECTS 3
Homework assignments
Verplicht | Weging 20% | ECTS 1,5
*midterm FEEDBACK*
Niet verplicht
Ingangseisen en voorkennis
Ingangseisen
Er is geen informatie over verplichte ingangseisen bekend.
Voorkennis
Secondary school knowledge of mathematics is required. Passed final high school exams in IB Analysis & Approaches Higher Level Mathematics, Dutch VWO “Wiskunde B”, or similar “Calculus and Algebra” courses from a foreign high school should be sufficient. Students who do not meet this math requirement should take UCACCMAT01 first.
Voertalen
- Engels
Competenties
-
Kritisch lezen
Cursusmomenten
Gerelateerde studies
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
Materiaal | Omschrijving |
---|---|
BOEK | Richard Hammack, Book of Proof, Edition 3, 2018. Book is available online for free. https://www.people.vcu.edu/~rhammack/BookOfProof/ |
Aanbevolen materiaal
Er is geen informatie over de aanbevolen literatuur bekend
Coördinator
dr. V.N.E. Blasjö | v.n.e.blasjo@uu.nl |
Docenten
dr. G.M. Terra-Bleeker | G.M.Terra@uu.nl |
Inschrijving
Naar OSIRIS-inschrijvingen
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien