Uw huidige browser heeft updates nodig. Zolang u niet update zullen bepaalde functionaliteiten op de website niet beschikbaar zijn.
Let op: het geselecteerde rooster heeft overlappende bijeenkomsten.
Volgens onze gegevens heb je nog geen vakken behaald.
Je planning is nog niet opgeslagen
Let op! Uw planning heeft vakken in dezelfde periode met overlappend timeslot
Modelleren met ODE's en PDE's (2024/2025: Periode 1)
Cursusdoel
Vakinhoudelijk
This course is an introduction to mathematical modelling using dynamical systems. This includes the process of translation real-world phenomena (arising for example in natural sciences, engineering or economics), into well-defined mathematical problems, analysing these models, and translating and interpreting the outcome of these mathematical analyses in the context of the real-world setting. A major challenge lies in finding a good compromise between accuracy of the model and accessibility of the resulting mathematical problem to analysis and computation.
In this course, we will cover basic concepts and modelling techniques, such as non-dimensionalization, scaling analysis and perturbation methods. Further, we first will focus on ordinary differential equations, covering both mathematical techniques to study them (e.g. using nullclines, fixed points, stability analysis, phase diagram analysis and perturbation methods) and real-world phenomena that can be modelled using them. The last part of the course is an introduction to partial differential equations and models that use them. Here, the focus is on the process of diffusion and of (traffic) flow, where we treat how to derive such models, and how to study them using techniques such as Fourier Transforms, Fourier Series and the method of characteristics. In the whole course, the focus is on modelling using mathematical techniques, and not on a rigorous treatment including proofs for all mathematical techniques and theorems that are used.
An integral part of the course is communicating about mathematical results and model output. Hence, also report writing in the context of modelling applications will be taught in this course.
Leerdoelen:
After this course, a student is able to
- create simple conceptual models for real world phenomena using ordinary differential equations and partial differential equations;
- study models consisting of ordinary differential equations, in particular their fixed points and their stability;
- use dimensional analysis, scaling and perturbation methods on ordinary and partial differential equations;
- use Fourier analysis to study the time and equilibrium behaviour of (reaction-) diffusion equations;
- use the method of characteristics to study the time behaviour of traffic flow equations;
- interpret and communicate about the results of mathematical analysis in the context of a real-world application.
Onderwijsvormen:
In general, there will be two 2 hour lectures and two 2 hour tutorials per week.
Toetsing:
Final exam (60% of course grade) and two project reports including peer feedback (20% of course grade each). The exam grade must be at least 5.5. In case of a retake, only the grade for the final exam will be changed.
Herkansing en inspanningsverplichting:
Students with a final grade lower than 4 can participate the retake exam if the average of their reports is at least 5.5. Only the final exam can be retaken. The retake exam will only replace the final exam grade.
Taal van het vak:
The language of instruction is English.
Werkvormen
Werkcollege
Toetsing
Eindresultaat
Verplicht | Weging 100% | ECTS 7,5
Ingangseisen en voorkennis
Ingangseisen
Er is geen informatie over verplichte ingangseisen bekend.
Voorkennis
Basics of linear algebra and analysis, ordinary differential equations (WISB231), numerical methods and basic familiarity with programming (e.g. Python). Some experience with partial differential equations is useful, but not mandatory.
Voertalen
- Engels
Cursusmomenten
Gerelateerde studies
- Informatica en wiskunde vanaf 2019-2020
- Informatica en wiskunde vanaf 2022-2023
- Informatica en wiskunde vanaf 2024-2025
- Minor Wiskunde
- Natuurkunde en Wiskunde 2023-2024
- Natuurkunde en wiskunde vanaf 2019-2020
- Natuurkunde en wiskunde vanaf 2020-2021
- Natuurkunde en Wiskunde vanaf 2024-2025
- Natuurkunde en Wiskunde vanaf 2025-206
- Wiskunde en Economie vanaf 2022-2023
- Wiskunde en Economie vanaf 2024-2025
- Wiskunde en toepassingen vanaf 2019-2020
- Wiskunde en toepassingen vanaf 2022-2023
- Wiskunde en toepassingen vanaf 2024-2025
- Wiskunde vanaf 2019-2020
- Wiskunde vanaf 2022-2023
- Wiskunde vanaf 2024-2025
Tentamens
Er is geen tentamenrooster beschikbaar voor deze cursus
Verplicht materiaal
-
BOEKIntroduction to the Foundations of Applied Mathematics” by Mark Holmes, Springer, 2019. Available free of charge as an e-book through WorldCat (UU Library) for students via https://link.springer.com/book/10.1007/978-3-030-24261-9.
Aanbevolen materiaal
Er is geen informatie over de aanbevolen literatuur bekend
Coördinator
dr. R. Bastiaansen | r.bastiaansen@uu.nl |
Docenten
dr. R. Bastiaansen | r.bastiaansen@uu.nl |
Inschrijving
Inschrijving
Van maandag 3 juni 2024 tot en met vrijdag 21 juni 2024
Na-inschrijving
Van maandag 19 augustus 2024 tot en met dinsdag 20 augustus 2024
Inschrijving niet geopend
Permanente link naar de cursuspagina
Laat in de Cursus-Catalogus zien